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The singular-value decomposition (SVD) is employed to study the effects of localization
phenomena on input–output relationships, and power and energy transmission ratios of
structures. For weakly and strongly coupled systems, existence of strong localization of
singular vectors and abrupt veering of singular value loci are shown. Occurrence of strong
localization causes abrupt changes in input–output directional properties. In contrast to
eigenvalues, singular values do not veer away by introducing a disorder in weakly coupled
systems. In particular, the use of singular values and vectors is computationally
advantageous in considering multiple load cases. While eigenvalue-based analyses give
information about the resonance frequencies and vibration modes of a structure, singular
values of the structure are related to the forced response characteristics and give the
dynamic behavior in the frequency domain. Representative examples in structural
dynamics are presented.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

It has long been known that inhibition of vibration propagation and localization of
vibration modes may occur in weakly coupled structures due to the existence of small
disorders. The vibration modes may change significantly to become strongly localized,
showing extreme sensitivity against some parameters, if a small disorder is introduced to
systems having weak internal coupling. This phenomenon is studied in various fields from
the physics [1–5] to structural dynamics [6–14]. Leissa [15] showed that there exists an
eigenvalue veering phenomenon corresponding to mode localization such that when two
eigenvalue loci approach each other, they do not intersect and veer away from each other.
By using a perturbation approach, Perkins and Mote [16] showed that eigenvalue veering
may also occur in continuous systems. Pierre [11] proved that when a small disorder is
introduced in conservative nearly periodic structures with weak internal coupling, both
strong mode localization and veering of the eigenvalue loci occur that indicates these are
two manifestations of the same phenomenon.

Consequences of both eigenvalue loci veering and mode localization phenomena are
catastrophic since small changes in system parameters result in large variations in the
eigenvalues and mode shapes respectively. Investigations into the effects of the disorder on
vibration mode localization typically employ eigensolution analysis and, up to date, no
attention has been paid to the behavior of singular values and vectors of systems. As
developed in this paper, the singular-value decomposition (SVD)-based analysis is
computationally advantageous in multiple load cases and well suited to study input–
output relationships and power and energy transmission ratios of systems.
0022-460X/02/$35 # 2002 Published by Elsevier Science Ltd.
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In this paper, input–output relationships of two representative systems are studied as
follows: a mistuned nearly periodic assembly of coupled oscillators and a strongly coupled
oscillator system. Existence of localization of singular-vectors and abrupt veering away of
the singular value loci are shown at weakly and strongly coupled systems. Occurrence of
localization causes abrupt changes in input–output relationships of a system that are
closely related to the singular values and vectors of the system. The relationships between
the singular values and power and energy transmission ratios are presented as well.

If forced vibrations of a structure in the existence of multiple load cases is studied, it is
of engineering value to know the worst possible load case of the structure for which
structural response for each load case should be investigated that is cumbersome. Since the
singular vectors associated with the first singular value give the worst possible load case
and corresponding structural response, it is particularly advantageous to use the SVD in
multiple load cases due to reduced computational costs. Besides, while eigenvalue based
analyses give information about the resonance frequencies and vibration modes of a
structure, singular values of the structure are related to the forced response characteristics
and give the dynamic behavior in the frequency domain. These are the main advantages of
the proposed analysis technique based on the SVD presented in this paper. Some of the
important results on the SVD are reviewed in the paper as well.

The outline of the article is as follows: we begin in section 2 by revisiting the properties
of the SVD. In section 3, directional properties of the SVD are presented. The
relationships among the singular vectors, singular values and corresponding matrix
transfer function are derived in section 4. Applications of the SVD to representative
examples are given in section 5, and conclusions are drawn in section 6.

2. PROPERTIES OF THE SINGULAR VALUE DECOMPOSITION

Based on the material in references [17] and [18], some properties of the SVD are
revisited in this section. Consider the matrix A 2 Cm�n; then there exist unitary matrices
U 2 Cm�m; R 2 Rm�n and V 2 Cn�n called the SVD of A such that A can be factored
uniquely as

A ¼ URVH; ð1Þ

where the columns of U ¼ ½u1ju2j � � � jum	 and V ¼ ½v1jv2j � � � jvn	 are, respectively, the left
and right singular vectors, and VH is the conjugate transpose of V: If m ¼ n; which is the
case for the systems in this paper, R ¼ Diagfs1; s2; . . . ; smg where si are the singular
values of A: Note that ui and vi are, respectively, orthonormal eigenvectors of AAH and
AHA such that

UUH ¼ I and AAHU ¼ UR2; ð2Þ

VVH ¼ I and AHAV ¼ VR2; ð3Þ

where I is the identity matrix. In addition, for a square matrix A having the following SVD
if

A ¼ URVH; A�1 ¼ VR�1UH: ð4Þ

Although the singular values of A are uniquely defined, the singular vectors are not. If
A ¼ URVH; then A ¼ U0RV0H where U0 ¼ Uejy and V0 ¼ Vexpjy; where j is the imaginary
unit, for any y is also a SVD of A:
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3. DIRECTIONAL PROPERTIES

Consider the following time-independent linear equation system:

Kd ¼ f; ð5Þ

where, in general, K 2 Cn�n; d 2 Cn and f 2 Cn: Then, d ¼ K�1f: Suppose that K�1 has the
SVD of K�1 ¼ URVH; where U 2 Cn�n; R 2 Rn�n and V 2 Cn�n: In order to show that the
system has different gains for different input directions, the SVD of K�1 is written in the
following dyadic form:

K�1 ¼
Xn

i¼1

siuiv
H
i : ð6Þ

Beforehand assume that the singular values are distinct which is the case for physical
systems considered here. If the force vector f is in the direction of the kth right singular
vector f ¼ vk; then one has

d ¼
Xn

i¼1

siuiv
H
i vk: ð7Þ

Since vi are orthonormal, vHi vk ¼ dik where dik is the Kronecker delta function, we get

d ¼ skuk ð8Þ

and

jjdjj2 ¼ sk: ð9Þ

Note that equation (8) shows that if f is in the direction of vk; the output d is in the
direction of uk; and equation (9) shows that the system’s gain is equal to sk: In brief, each
right singular vector tells us how we would place an input into the system to produce a
gain equal to the associated singular value, and the corresponding left singular vector tells
us how the response to this input is distributed among the different degrees of freedom
[19].

For the application of the SVD to semidiscrete equation systems, consider the following
matrix equation of structural dynamics

M.ddþ C’ddþ Kd ¼ f; ð10Þ

where M 2 Rn�n is the mass matrix, C 2 Rn�n the viscous damping matrix, K 2 Rn�n the
stiffness matrix, f 2 Rn the vector of applied forces, and d 2 Rn; ’dd and .dd are, respectively,
the displacement, velocity and acceleration vectors. By taking the Laplace transform of
equation (10), one get

DðsÞ ¼ GðsÞFðsÞ; ð11Þ

where the matrix transfer function GðsÞ is defined by

GðsÞ ¼ ðMs2 þ Cs þ KÞ�1: ð12Þ

Then, the steady state output DðjoÞ of this system in response to the sinusoidal input of
frequency o; i.e., fðtÞ ¼ *ff sinðotÞ; is given by

DðjoÞ ¼ GðjoÞ*ff; ð13Þ

where *ff is the input magnitude vector. In equation (13), the magnitude of DiðjoÞ is the
magnitude of the ith component of the output vector d; while the phase of DiðjoÞ is
the phase angle between the ith component of the output vector d and the input f: Similar
to the time-independent case, if *ff is in the direction of vk; the response DðjoÞ will be in the
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direction of uk having the gain of sk: Note that the singular values and vectors are to be
the function of the excitation frequency o; and we adopt the ordering
s15s25 � � �5sn50:

4. INPUT–OUTPUT RELATIONSHIPS

Suppose that the system is represented in terms of the Laplace transformed variables as
in equation (11). For a sinusoidal excitation of frequency o; by neglecting the argument
s ¼ jo; the SVD of G is given by G ¼ URVH: Since fvig form a basis, an input in any
direction can be represented by

F ¼
Xn

i¼1

aivi: ð14Þ

The coefficients ai can be computed via the orthonormal property of vi as follows:

ai ¼ h%vvi;Fi; ð15Þ

where h � ; � i defines the L2 inner product and a superposed bar denotes conjugation. Then,
the output D can be computed by

D ¼
Xn

i¼1

siuiv
H
i

 !
F ¼

Xn

i¼1

aisiui ð16Þ

and the transfer function between the ith output and the jth input is given by

Gij ¼
@Di

@Fj

¼
Xn

m¼1

smum;i %vvm;j; ð17Þ

where Di is the ith entry of D; um;i is the ith entry of um and sm is the mth singular value of
GðsÞ and so on. Note that the input–output sensitivities, i.e., Gij terms, increase as s1
increases, in other words, as ðMs2 þ Cs þ K) gets close to the singularity which may occur
for a complex frequency s ¼ jo while it may not for other frequencies. The contribution of
the first singular value s1 and associated singular vectors in equation (17) is dominant
since s1 is the largest singular value.

4.1. ANALYSIS OF CURVE VEERING AND LOCALIZATION

It is shown in reference [11] that even though classical perturbation methods fail to
describe localization phenomenon of weakly coupled systems, they provide useful insight
into the onset of localization. In order to handle the dramatic changes resulting from small
disorders, a modified perturbation method is developed in references [12, 13] where the
small coupling between component systems which governs the small distance between
eigenvalues is treated as a perturbation while the parameter irregularities are included in
the unperturbed system. On the other hand, while the modified perturbation method
detects the change in the direction of the loci, it fails for the disorders of order e2 or smaller
degree, namely, the eigenvalue loci veering region, in which case one must use a classical
procedure [11].

Recall that U; R and V are defined by the eigensolution problems in equations (2)
and (3) as follows: ui the eigenvectors in equations (2), vi the eigenvectors in equations (3)
and r2

i the eigenvalues in both equations (2) and (3). It is straightforward to compute the
perturbations in the SVD of a matrix by using the results of the perturbations of
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eigensolutions; hence, the analyses based upon perturbation methods in references [11–13]
can also be applied to singular vectors and squares of the singular values to detect the
onset of localization. Similarly, the sensitivity analysis results about the eigensolutions in
the literature are applicable to perturbations in s2i ; ui and vi as well.

Lemma. Consider the following parameterized system

ðKþ eAÞdðeÞ ¼ f þ eb ð18Þ

whose solution xðeÞ has the following form:

xðeÞ ¼ xþ e ’xxð0Þ þ Oðe2Þ; ð19Þ

where ’xxð0Þ ¼ K�1ðb� AxÞ: Then, the following holds for any vector norm and consistent

matrix norm

jjxðeÞ � xjj
jjxjj 4ejjK�1jj jjbjj

jjxjj þ jjAjj
� �

þ Oðe2Þ: ð20Þ

Proof. See page 79 of reference. [20].

If the matrix transfer function GðsÞ ¼ ðMs2 þ Cs þ KÞ�1 has the SVD of G ¼Pn
i¼1 siuiv

H
i for a complex frequency s ¼ jo; then following equation (20) it is concluded

that OðeÞ perturbations in M; C; K and force vector f result in changes in the solutions by
an amount of es1; where s1 is the largest singular value of ðMs2 þ Cs þ KÞ�1:

4.2. ENERGY DISSIPATION AND SINGULAR VALUES

It is shown in references [21,22] that singular values give a frequency-domain
characterization for the limits to some appropriately defined gains. For a deterministic
periodic input signal f of frequency o; sum of the mean-squared values of the steady state
outputs dss over one period is given by

SMSVOðoÞ ¼ o
2p

Z 2p=o

0

dTssðtÞ dssðtÞ dt ¼ 1

2
fTSðoÞf; ð21Þ

where

SðoÞ ¼ 1
2½G

HðjoÞGðjoÞ þGHðjoÞGðjoÞ	 ð22Þ

On the other hand, sum of the mean-squared values of the inputs over one period is

SMSVI ¼ o
2p

Z 2p=o

0

fTðtÞfðtÞ dt ¼ 1

2
fTf: ð23Þ

Then,

s21ðoÞ5
SMSVOðoÞ

SMSVI
5s2nðoÞ: ð24Þ

For a deterministic aperiodic input, equation (24) becomes

s21ðoÞ5
jj#ddðjoÞjj22
jj#ffðjoÞjj22

5s2nðoÞ: ð25Þ

where

jj#ddðjoÞjj22
jj#ffðjoÞjj22

¼
Pn

i¼1 j #ddiðjoÞj2Pn
i¼1 j #ff iðjoÞj

2
¼ sum of energy densities of the outputs at o

sum of energy densities of the inputs at o
ð26Þ
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and the superposed hat denotes the Fourier transformed variables as follows:

#ff iðjoÞ ¼
Z 1

�1
fiðtÞe�jot dt: ð27Þ

For a stochastic input signal, equation (24) becomes

s21ðoÞ5
trace½PdðoÞ	
trace½Pf ðoÞ	

5s2nðoÞ; ð28Þ

where PdðoÞ and Pf ðoÞ are, respectively, the Fourier transforms of the covariance
matrices of the output and input vector processes. For the proofs, see references [21,22].
Following equations (24) and (25), one can think of s21 and s2n as the limits to the average
power transmission ratio for periodic input signals and the energy transmission ratio for
aperiodic input signals. The upper bound is achieved if the input is placed in the direction
of v1; and the lower bound is achieved if the input is placed in the direction of vn:

5. NUMERICAL EXAMPLES

In this section, input–output relationships of two representative systems are studied by
using singular values and vectors as follows: a mistuned assembly of coupled oscillators
and a strongly coupled oscillator system. All numerical simulations are completed by using
the MATLAB.

5.1. A MISTUNED ASSEMBLY OF COUPLED OSCILLATORS

Consider the disordered system of two coupled oscillators shown in Figure 1. By using
the SVD, forced response characteristics of the coupled oscillators are studied in this
section. The governing equations of motion for small angles are as follows

m‘2 .yy1 ¼ f1‘� k‘2y1 � kð‘y1 � ‘ð1þ D‘Þy2Þ‘� mg‘y1; ð29Þ

m‘2ð1þ D‘Þ2 .yy2 ¼ f2‘ð1þ D‘Þ þ kð‘y1 � ‘ð1þ D‘Þy2Þ‘ð1þ D‘Þ � mg‘ð1þ D‘Þy2: ð30Þ

By taking the Laplace transform of both equations and arranging them, one gets

‘

g

� �
s2y1ðsÞ þ ð1þ 2R2Þy1ðsÞ � R2ð1þ D‘Þy2ðsÞ ¼

F1ðsÞ
mg

; ð31Þ
Figure 1. Two coupled oscillators.



EFFECTS OF MODE LOCALIZATION 51
‘

g

� �
ð1þ D‘Þs2y2ðsÞ þ 1þ R2ð1þ D‘Þ

� 	
y2ðsÞ � R2y1ðsÞ ¼

F2ðsÞ
mg

: ð32Þ

By defining *y1y1 ¼ y1=ð1þ D‘Þ and *y2y2 ¼ y2 to obtain symmetric system matrices, equations
(31) and (32) can be cast into the following form

*HHðsÞ ¼ Ms2 þ K
� 	�1

FðsÞ; ð33Þ

where M and K are symmetric, ‘ is the nominal length of the pendulums, D‘ the second
pendulum’s dimensionless length deviation from the nominal length, o the excitation
frequency, l ¼ o2=ðg=‘Þ the dimensionless eigenvalue, R2 ¼ ðk=mÞ=ðg=‘Þ the dimension-
less coupling, *HHðsÞ ¼ ½ *y1y1ðsÞ *y2y2ðsÞ	T; and FðsÞ ¼ ½F1ðsÞ=ðmgÞF2ðsÞ=ðmgÞ	T: For D‘ ¼ 0; the
system is called tuned or ordered; otherwise, it is mistuned or disordered. Free vibration
modes, mode localization and eigenvalue loci veering phenomena of this system are
studied in references [11, 12], where in the existence of small disorder strong mode
localization is reported for weakly coupled systems whereas mode shapes and eigenvalues
of strongly coupled system do not manifest localization. Similar phenomena are observed
in input–output relationships of this system as well.

Suppose that one is interested in the worst possible load case, which can be formulated
as the solution of the following problem: find the displacement vector d in response to the
worst loading f; that is,

Find

maxjjdjj2 s:t: jjfjj2 ¼ 1; ð34Þ

where the forcing vector length is set to unity jjfjj2 ¼ 1 to quantify the input–output
relationships uniquely. By definition of singular values in reference [23], the above problem
defined by equation (34) is equivalent to finding the largest singular value s1 of the transfer
function matrix G between the input f and the output d as follows: if si is the ith singular
value of the matrix G; then

s1 ¼ maxfjjGxjj2 : x 2 Cn; jjxjj2 ¼ 1g; so s1 ¼ jjGw1jj2 for some unit vector w1 2 Cn;
s2 ¼ maxfjjGxjj2 : x 2 Cn; jjxjj2 ¼ 1; x ? w1g; so s2 ¼ jjGw2jj2 for some unit vector
w2 2 Cn such that w2 ? w1;
� � �
sk ¼ maxfjjGxjj2 : x 2 Cn; jjxjj2 ¼ 1; x ? w1; . . . ; wk�1g; so sk ¼ jjGwkjj2 for some
unit vector wk 2 Cnsuch that wk ? w1; . . . ; wk�1:

Instead of solving the original problem defined by equation (34), finding the largest
singular value s1 is computationally cheaper, because it eliminates the need to find the
worst possible load case which is cumbersome. As revisited in section 2, the right singular
vector v1 and left singular vector u1 give the worst possible loading direction and the
corresponding structural response respectively. Thus, the original problem reduces to
finding the maximum eigenvalue of GGH which is computationally much cheaper to solve.
For instance, in order to solve equation (34) for ten coupled pendulums with four external
force terms, if a constrained optimization algorithm employing the Newton method in the
International Mathematical Subroutines Library (IMSL) is used to compute the worst
load case, it is found to be about 90 times slower than the SVD. If the problem size
increases, the difference between the CPU times of the SVD-based analysis and
conventional methods even deepens. Note that there is no need to compute all the
singular values, because only the first singular value and associated singular vectors are
needed that can be computed very efficiently by using selective algorithms, e.g., see
references [18, 20].
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The following parameter values are used in the numerical studies: g ¼ 10; ‘ ¼ 1; k ¼ 1;
m ¼ 640 for a weakly coupled system (R ¼ 0�0125) and k ¼ 1600 for a strongly coupled
system (R ¼ 0�5). For limited space, only the results of the first singular value s1
and associated left singular vector u1 are presented here. Since the system matrices M and
K are symmetric in equation (33), right singular vectors vi are equal to ui: Considering
the SVD of the matrix transfer function GðsÞ ¼ Ms2 þ K

� 	�1
of the weakly coupled

system, the singular value loci s1 is presented in Figure 2, and the components of the
associated left singular vector u1 are given in Figures 3 and 4, where ori are the natural
frequencies and u1;j denotes the jth component of u1: Note that while u1 is the worst
possible load case and the corresponding structural response (u1 ¼ v1 in this problem), s1
is the corresponding structural power and energy transmission ratios. The peaks in
singular-value loci correspond to resonance frequencies. These plots show the way the
system will respond to a sinusoidal excitation of frequency o at steady state. Since there is
no damping in the system, components of the singular vectors exhibit jumps at resonance
frequencies.

Contrary to the loci of eigenvalues in reference [11], the singular value loci of the weakly
coupled oscillators in Figure 2 are almost insensitive to changes in the disorder D‘: As
singular values of a system are the bounds of the system’s energy and power transmission
ratios due to equation (24), (25) and (28), it means that the system’s power and energy
transmissions are almost insensitive to changes in the disorder D‘ in all frequencies. The
loci of both singular values of the weakly coupled system are shown in Figure 5 for
D‘ ¼ 0�005 in which one can observe the singular value veering phenomena about o ¼
3�158 rad=s: As the amount of the disorder D‘ increases, the gap between the two peaks of
s1 corresponding to resonance frequencies of the system increases having a curve veering
in the middle of the peaks. Components of singular vectors change abruptly at resonance
Figure 2. The singular value s1 where R ¼ 0�0125:



Figure 3. The left singular-vector component u1;1 where R ¼ 0�0125:

Figure 4. The left singular-vector component u1;2 where R ¼ 0�0125:
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Figure 5. The singular-value veering phenomena for weakly coupled system for R ¼ 0�0125 and D‘ ¼ 0�005:
(}} s1; - - - - - - - s2).
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frequencies, o ¼ 3�158 rad=s and D‘ ¼ 0 whereas the corresponding changes in singular
values are smooth. This result means the power and energy transmission ratios are
smooth; however, distribution of the total energy among different degrees of freedom may
change abruptly as determined by the left singular vectors ui:

For the strongly coupled system, the singular-value plot s1 is presented in Figure 6, and
components of the associated left singular vector u1 are given in Figures 7 and 8. For
D‘ ¼ 0�005; the singular value veering phenomena occurs about o ¼ 3�71 rad=s as shown
in Figure 9. Components of singular vectors change abruptly at the peaks of s1 (i.e.,
resonances), o ¼ 3�71 rad=s and D‘ ¼ 0:

It is noteworthy that while eigenvalue-based analyses give the resonance frequencies and
vibration modes of a structure, singular values are related to the forced response
characteristics and give the system gain as a function of the excitation frequency. For both
weakly and strongly coupled systems, it is concluded that the power and energy
transmission ratios do not show abrupt changes due to the disorder because the singular
values do not show abrupt changes due to the disorder. Hence, the power or energy of the
system is not dissipated in the existence of strong mode localization but just concentrated
at certain degrees-of-freedom which are determined by the singular vectors. While these
power and energy transmission ratios may be large at certain excitation frequencies as a
result of resonance, they may be small at some other excitation frequencies, e.g., see si loci.
The frequencies at which singular value veering phenomenon occurs have a special



Figure 6. The singular value s1 where R ¼ 0�5:

Figure 7. The left singular-vector component u1;1 where R ¼ 0�5:
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Figure 8. The left singular-vector component u1;2 where R ¼ 0�5:
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meaning as follows: two singular values are almost equal to each other at such frequencies
whereas their singular vectors are completely different. It means that while the system has
almost the same power and energy transmission ratios at these frequencies, forced
response characteristics are quite different. Subsequently, these frequencies will be called
isopower frequencies.

The difference between the maximum and minimum singular values (s1 � sn) of the
tuned system, i.e., D‘ ¼ 0; having n ¼ 2 and 50 components are given in Figure 10.
Observe that as the number of components in tuned systems increases, the bounds set by
the singular values on power and energy transmission of the system (i.e., s1 and sn) change
insignificantly; thus, the power and energy transmission ratios are almost insensitive to the
number of oscillators for tuned systems. The bandwidth (s1 � sn) is very tight, which is
typical for nearly periodic tuned systems as well; consequently, there is not significant
difference among the power and energy transmission ratios if the input is placed in the
direction of different right singular vectors vi: For the tuned system, the power and energy
transmission ratios are mainly affected by the excitation frequency o; e.g., see Figure 10.
In contrast, mistuned systems do not have tight (s1 � sn) bandwidths and a small disorder
in the system may result in significant changes in (s1 � sn), e.g., see Figures 5 and 9.

5.2. A STRONGLY COUPLED OSCILLATOR SYSTEM

It is shown in this example that singular-value veering and singular-vector localization
may arise naturally in strongly coupled systems as a function of the excitation frequency o
without any disorder. Consider the coupled mass–dashpot–spring system shown in



Figure 9. The singular-value veering phenomena for strongly coupled system for R ¼ 0�5 and D‘ ¼ 0�005:
(}} s1; - - - - - - s2).

EFFECTS OF MODE LOCALIZATION 57
Figure 11 whose parameters mi; ci and ki are listed in Table 1. The equations of motion are
as follows:

M.ddþ C’ddþ Kd ¼ f; ð35Þ
where

d ¼ ½x1 x2 x3	T; ð36Þ

f ¼ ½f1 f2 f3	T; ð37Þ

M ¼ Diagfm1;m2;m3g ð38Þ

C ¼
c1 þ c2 �c2 0

�c2 c2 þ c3 �c3

0 �c3 c3

2
64

3
75; ð39Þ

K ¼
k1 þ k2 �k2 0

�k2 k2 þ k3 �k3

0 �k3 k3

2
64

3
75 ð40Þ

that represent a strongly coupled system. The corresponding matrix transfer function is
defined by GðsÞ ¼ ðMs2 þ Cs þ KÞ�1 whose SVD is denoted by G ¼ URVH: The singular



Figure 10. s1 � sn for the tuned systems having n ¼ 2 and 50 components. (}} n ¼ 2; - - - - - - n ¼ 50).

Figure 11. The mass–dashpot–spring system.
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values si and components of the left singular vectors ui of GðsÞ are shown in Figures 12–15
as a function of the excitation frequency o: Note that vi ¼ ui for this problem because G is
symmetric, i.e., GGH ¼ GHG in equations (2) and (3). The loci of s1 and s2 veer away at
o ¼ 0�1825 and o ¼ 0�6151 rad=s; and the loci of s2 and s3 veer away at o ¼ 0�3872 rad=s
(i.e., isopower frequencies). These loci cannot cross because there is no multiple singular
value for the system, that results in a mutual repulsion of the loci, or curve veering. When
the singular-values veer away, corresponding singular vectors show abrupt changes. For



Table 1

The parameters of mass–dashpot–spring system

Parameters i ¼ 1 i ¼ 2 i ¼ 3

mi 100 20 25
ci 1.2 0.2 0.8
ki 0.3 3 7

Figure 12. Singular values of the mass–dashpot–spring system as a function of o (}} s1; - - - - - - s2; –�–�–s3).
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instance, it can be observed in Figure 14 that components of u2 change abruptly when
singular value loci veering for s2 occurs at o ¼ 0�1825; 0�3872 and 0�6151 rad=s: If the
system is excited in the direction of the second right singular vector v2 ¼ u2 and the
excitation frequency o changes from 0�1 to 0�4 rad/s, the input–output relationships will
change significantly; subsequently, distribution of an input between different output
channels will change dramatically, which is due to inhibition of vibration propagation and
consequently localization of vibration modes as a function of excitation frequency o:
Meanwhile, singular values change smoothly that means power and energy transmission
ratios are smooth. The only abrupt change in singular values (and subsequently in power
and energy transmission ratios) occurs at resonance frequencies.



Figure 13. Magnitudes of the left singular vector u1 as a function of o (}} ju1;1j; - - - - - - ju1;2j; –�–�– ju1;3j).
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In order to detect the onset of localization in input–output relationships, the matrix
transfer function of this system is studied as well. Unlike the eigenvalues and eigenvectors,
effects of the disorder on matrix transfer function components GijðsÞ are smooth for both
weakly and strongly coupled systems in numerical examples, not presented here for limited
space. The characteristics of GijðsÞ; which quantify the effect of the input acting at the jth
degree of freedom on the ith degree of freedom, are similar to those of the singular values;
in particular, the largest singular value s1:

6. CONCLUSIONS

In this paper, input–output relationships of structures are studied by using the SVD
with an emphasis to localization and curve veering phenomena. The SVD-based analysis is
well suited to study the directional properties of inputs and outputs of a system. If an input
is distributed in the direction of a right singular vector vi; the system response will be
distributed to the system degrees of freedom in the direction of associated left singular
vector ui with a gain that is equal to the corresponding singular value si: In an extent to
mode localization and eigenvalue loci veering phenomena of weakly coupled disordered
systems, existence of singular vector localization and singular value loci veering
phenomena (occurring at the so-called isopower frequencies) are shown in weakly and



Figure 14. Magnitudes of the left singular vector u2 as a function of o (}} ju2;1j; - - - - - - ju2;2j; –�–�– ju2;3j:
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strongly coupled systems. Occurrence of strong mode localization causes abrupt changes
in input–output relationships of systems; however, the changes in singular values and
input–output transfer function relationships are smooth; thus, power and energy
transmission ratios change smoothly as well. As a result of singular-vector localization,
the distribution of system’s energy among different degrees of freedom changes drastically
and abrupt changes in the outputs are observed in response to small changes in the input
vector and the excitation frequency o:

It is shown that the power and energy transmission ratios between the input and out-
put vectors in a system are bounded by the squares of the maximum and minimum
singular values of the system, which do not change significantly as the number of
oscillators increases for tuned systems. The difference between the maximum and
minimum singular values is typically very tight for nearly periodic tuned systems;
as a result, the power and energy transmission ratios are not affected by placing the
inputs in different right singular vector directions vi but mainly determined by
the excitation frequency o for tuned systems. However, mistuned systems may
have large (s1 � sn) bandwidths and a small disorder in the system may result in
significant changes in the bandwidth (s1 � sn); i.e., implying sensitive power and energy
transmission ratios. Since singular values are related to power and energy transmission
ratios, they can be used to shape vibration absorbing or magnifying characteristics
of a system. For instance, if we design a composite material or an absorber to absorb
vibrations, then our goal should be to minimize s1 to minimize displacements in all load



Figure 15. Magnitudes of the left singular vector u3 as a function of o (}} ju3;1j; - - - - - - ju3;2j; –�–�– ju3;3j:
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cases. It is found in design trials on lumped parameter systems that using singular values in
such tasks has computationally advantages over using frequency domain constraints,
which has been under investigation.

If the worst forced vibration case of a structure is sought in the existence of multiple
load cases, forced response for each load case should be investigated which is cumbersome;
the use of singular values is computationally advantageous in this case. To this end, s1 has
a special meaning since it is the largest system gain and corresponding right and left
singular vectors v1 and u1 give, respectively, the worst possible load case and the
corresponding system response. While eigenvalue-based analyses give information about
the resonance frequencies and vibration modes of a structure, singular values of the
structure are related to the forced response characteristics and give the dynamic behavior
in the frequency domain.
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